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Abstract

This paper presents a non-sample-based probabilistic approach to determine the parameters in a vibration absorber

when the main system is described by random variables. The sinusoidal steady-state amplitude of the main mass is

considered as the dynamic performance measure. The design goal is to reduce both the mean and variance of the dynamic

performance measure over the excitation frequency range. The design process is complicated because the resonance

frequency of the main system is also a random variable. In order to address these difficulties, system-specified, maximum,

critical amplitudes according to three critical frequencies capable of representing the excitation frequency range are

established. Then limit-state functions are formed at each of the critical frequencies by subtracting the respective dynamic

performance measure from the critical amplitude. Each limit-state function establishes a non-conformance region in terms

of the random variables. The probability of the union of the non-conformance regions provides a single objective to be

minimized by adjusting the design parameters in the vibration absorber. A first-order reliability method is implemented to

efficiently estimate probabilities. Monte-Carlo sampling is invoked to verify our method. The proposed approach for the

absorber design is compared with a deterministic approach and a second-order transmission of moments approach

available in the open literature. The proposed approach is found to be robust, expandable and flexible.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many engineering systems fail due to vibration. For example, in microelectronics, vibration is the second
highest cause of failures, which accounts for 27% of the total failures (failures due to temperature are
predominant at about 40%). The vibration of electronic systems manifests itself in several ways: connections
fail, or indeed, components may break off the circuit board. In mechanical systems, excessive vibration levels
induce, for example, structural safety problems (e.g. fatigue) as well as human discomfort (e.g. motion
sickness). Deterministic optimization has produced greatly improved performance in all types of engineering
systems. It can however, lead to unreliable design if the uncertainty is ignored.

All systems exhibit uncertainty. This arises from (a) input uncertainty (e.g. loadings, supply voltages, etc.),
and (b) component variation (e.g. resistance and dimensional tolerances, etc.) that results in performance (e.g.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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responses) variations. Robust design is a methodology that attempts to ensure that the responses are
insensitive to both the input uncertainty and component variations without actually eliminating the causes.
Specifically, examples of robust design include parameter design wherein means are adjusted while keeping
tolerances steady [1], tolerance design where means are kept constant and tolerance are adjusted to reach a
minimum cost [2,3], integrated design where means and tolerance are adjusted simultaneously [4–6], and
conformance-based design where the well-known Design for Six Sigma [7] is an example. Robust design has
been applied to a wide variety of static performance-related problems. There have been a few applications of
robust design to dynamic performance with respect to the reduction of vibration levels in mechanical systems.
Seki et al. [8] applied the robust design concept to the dynamic design of an optical pick-up actuator focusing
on shape synthesis of a leaf spring using mechanistic performance models and design of experiments. The
thickness and the modulus of elasticity of the leaf spring were considered to be the design variables. The
natural frequency of the actuator, and the response gain at the natural frequency were selected as the two
performance measures. The ‘‘nominal-is-best’’ signal-to-noise ratio served as the quality metric for the natural
frequency, and the ‘‘smaller-is-better’’ signal-to-ratio served as the quality metric for the response gain. The
optimal width was determined by minimizing simultaneously the mean and variance of the performance
measures. In another paper, Hwang et al. [9] minimized mean and standard deviation of the displacement at
the first resonance frequency of an automobile mirror system with both stiffness and mass variation using
Taguchi’s smaller-is-better loss function. Finally, of direct relation to this paper, Zang et al. [10] applied robust
design to the two-degree-of-freedom (2-dof) system shown in Fig. 1.

They considered the main mass (m1) and stiffness (k1) to be uncertain and assigned normal probability
distributions. They let the performance measure be the normalized amplitude of the main mass, denoted
herein as An. Then they derived its mean m(An) and variance s2(An) using first-order Taylor series
approximations comprising means and variances of m1 and k1. Next, they produced a single objective in the
form

G ¼ a
mðAnÞ

m�ðAnÞ
þ ð1� aÞ

sðAnÞ

s�ðAnÞ
, (1)

where m* and s* are the best-case design values and a is a weight that spans from zero to one. Finally, they
simplified the analysis by setting the excitation frequency to be the natural frequency of the main system. In
order to help determine the three parameters in the absorber subsystem, (i.e. m2, k2 and c2), they applied
optimization to minimize G. Various designs were obtained for a range of weightings given by a. For the most
robust design they subjectively selected the design that appeared to simultaneously minimize m(An) and s(An).
Their approach increased robustness when compared to deterministic designs in Refs. [11,12].

In this paper a new, non-subjective, probabilistic approach is proposed to determine the stiffness, mass and
damping parameters of a vibration absorber when there is uncertainty in the main mass and stiffness. The
approach ensures that the amplitude of the main mass is within a critical limit over a wide range of excitation
frequencies. In Section 2, the vibration absorber system to be designed and its mechanistic model in terms of
Fig. 1. Two-degree-of-freedom system comprising the main system and an attached damped vibration absorber.
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dynamic performance are introduced. Next, a deterministic optimization problem is formulated to minimize
the amplitude of the main mass at three critical frequencies simultaneously. Then, the formulation is extended
to include the probabilistic nature of the problem. In Section 3, limit-state functions and first-order reliability
methods (FORM) for probability evaluations are introduced. An optimization problem that addresses
robustness is developed in terms of the combined probability of non-conformance at the critical frequencies.
In Section 4, the design approach is applied to design a vibration absorber of a footbridge. Comparisons with
other previous approaches are discussed. Section 5 shows advanced analyses.

2. Vibration absorber modeling and design approaches

2.1. Response modeling

As shown in Fig. 1, the main system is excited by a sinusoidal force of constant amplitude P0 with a
wide range of excitation frequencies (o). An approach to protecting the main system from steady-state
disturbances at the resonance frequency of the main system (without the absorber system) is to use a vibra-
tion absorber. From [12], resonance frequency of the main system (1-dof system) without the absorber system
has a form

ðoÞ1�dof ¼

ffiffiffiffiffiffi
k1

m1

s
. (2)

When the absorber system is attached to the main mass (m1), the main system has changed from a
1-dof system to a 2-dof system (the main system attached with the absorber system). For the 2-dof system,
the equations of motion in terms of displacements of the two masses from their at-rest-positions are [10–12]:

m1 €x1 þ c2ð _x1 � _x2Þ þ k1x1 þ k2ðx1 � x2Þ ¼ P0 sinðotÞ,

m2 €x2 þ c2ð _x2 � _x1Þ þ k2ðx2 � x1Þ ¼ 0. ð3Þ

The complete solutions to the two-coupled equations in Eq. (3) comprise both a transient and a steady-state
part. Herein the transient responses are considered negligible and thus only the (sinusoidal) steady-state
responses are considered. We let the parameters for the main subsystem be v ¼ [m1,k1] and the design
parameters in the vibration absorber be p ¼ [m2,k2,c2]. The two, steady state, amplitudes of the vibrating
masses are, respectively [10–12],

jx1j ¼ P0
c22o

2 þ ðk2 �m2o2Þ
2

c22o2ðk1 �m1o2 �m2o2Þ
2
þ ðk2m2o2 � ðk1 �m1o2Þðk2 �m2o2ÞÞ

2

 !1=2

, (4)

jx2j ¼ P0
c22o

2 þ k2
2

c22o
2ðk1 �m1o2 �m2o2Þ

2
þ ðk2m2o2 � ðk1 �m1o2Þðk2 �m2o2ÞÞ

2

 !1=2

. (5)

In order to provide comparisons with work in Refs. [10–12], we define xstatic ¼ P0/k1 to be the static
deflection of the main mass. Now, the normalized amplitude of interest, obtained by dividing Eq. (4) by the
static deflection, is

anðp; v;oÞ ¼ k1
c22o

2 þ ðk2 �m2o2Þ
2

c22o
2ðk1 �m1o2 �m2o2Þ

2
þ ðk2m2o2 � ðk1 �m1o2Þðk2 �m2o2ÞÞ

2

 !1=2

. (6)

For no damping (c2 ¼ 0), the 2-dof system has two resonance frequencies, neither of which equals the
original resonance frequency of the main mass (and also the absorber). The two resonance frequencies of the
2-dof system has forms:

ðo1Þ2�dof ¼
k1

2m1

� �
1þ q2ð1þ ZÞ � ðq4ð1þ ZÞ2 � 2ð1� ZÞq2 þ 1Þ1=2
� �� �1=2

, (7)
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ðo2Þ2�dof ¼
k1

2m1

� �
1þ q2ð1þ ZÞ þ ðq4ð1þ ZÞ2 � 2ð1� ZÞq2 þ 1Þ1=2
� �� �1=2

. (8)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p . ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
, and Z ¼ m2/m1.

The normalized amplitude of the main mass in the 2-dof system is infinite at these two resonance
frequencies. While this may not be a problem when the main mass is running at (o)1-dof: (a) the main mass’s
running at the other frequencies (e.g. during startup and shutdown), (b) a wide range of excitation frequency
(o) including (o1)2-dof and (o2)2-dof, and (c) variation in (o)1-dof due to manufacturing processes of the main
mass (m1) and stiffness (k1) could cause an infinite normalized amplitude of the main mass. In practice, a finite
amount of damping in the absorber system is used to control the vibration of the main system over a wide
frequency range. However if damping is present in the absorber system, the normalized amplitude of the main
mass will no longer be zero at (o)1-dof. Thus, amplitude of the mass (m1) in 2-dof system at (a) the resonance
frequency of primary system ((o)1-dof), (b) two resonance frequencies of the 2-dof system ((o1)2-dof and
(o2)2-dof) could characterize performance of absorber system although the 2-dof system is affected by a wide
range of excitation frequency. For notation convenience, we set w1 ¼ (o1)2-dof, w2 ¼ (o)1-dof, and
w3 ¼ (o2)2-dof hereinafter.

The significance of o ¼ w1, w2, and w3 on an is shown by an example. Consider a system with
m1 ¼ 17,500 kg, k1 ¼ 3MN/m, m2 ¼ 175 kg, and k2 ¼ 30kN/m and arbitrary c2. The resonance frequencies
are w1 ¼ 12.5 rad/s, w2 ¼ 13.1 and w3 ¼ 13.8 and. Fig. 2 shows the normalized amplitude an(c2,o) of the main
mass for selected c2 over the frequency range.

As expected, for c2 ¼ 0N s/m, the maximum amplitudes occur at frequencies w1 and w3: there is negligible
amplitude at w2. For ideally large damping (e.g. c2 ¼ 20,000N s/m to show infinite damping value),
the maximum amplitude occurs near w2. Finally, a finite amount of damping (e.g. c2 ¼ 272N s/m) provides
for a finite normalized amplitude over the wide range of excitation frequencies, although local maximum
and minimum occur near w1, w2 and w3. Ideally, we would like to have the normalized amplitude uni-
formly small over the entire range of frequencies. Fortunately, as suggested in Fig. 2 and shown more
clearly in Fig. 3, a reasonable alternative is to control the normalized amplitudes near the frequencies w1, w2

and w3. Thus, for expediency, we select these three frequencies as critical frequencies to represent the frequency
range.
Fig. 2. Normalized amplitude of mass m1 for three selected damping parameter values: c2 ¼ 0 (dotted line), c2 ¼ 272 (line), and

c2 ¼ 20,000 (dashed line).
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Fig. 3. Normalized amplitude of mass m1 over frequency range with three critical frequencies emphasized.
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2.2. Optimal deterministic design

For now, let the main mass m1 and stiffness k1 be fixed and deterministic so v ¼ v0. Let us substitute, in turn,
o ¼ w1, w2 and w3 into an. Then three distinct corresponding normalized amplitudes arise

ai ¼ anðp;wiÞ; i ¼ 1; 2; 3. (9)

Further, for deterministic components in the absorber system, the critical frequencies w1, w2 and w3 are
deterministic, and as is clear in Eqs. (2), (7) and (8) are explicit functions of m1, k1, m2 and k2. When w1, w2 and
w3 are substituted, in turn, into Eq. (9) we get three deterministic performance measures

ai ¼ ziðpÞ; i ¼ 1; 2; 3: (10)

In order to control the three normalized amplitudes, we allocate p through the unconstrained optimization
problem

Minimize
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ a2

2 þ a2
3

q
.

For example, with v0 ¼ [17,500 kg, 3.0MN/m] and a given mass ratio Z ¼ 1%, we find [m2,k2,c2] ¼ [175 kg,
29,577N/m, 271.1N s/m ]. If we wish to balance the amplitudes at w1 and w3, we introduce the constraint
a1–a3 ¼ 0, and now obtain the deterministic design pD ¼ [m2,k2,c2] ¼ [175 kg, 29,393N/m, 272.2N s/m]. This
result agrees with Refs. [11,12]. The frequency response of an(pD,v0,o) is shown in Fig. 4.

2.3. Uncertainty considerations

We now introduce the shortcomings of using a deterministic design when m1 and k1 are random variables
denoted as V1 and V2, respectively. For simplicity in presentation let V1 and V2 be lognormally distributed.
For the main mass, let m(V1) ¼ 17,500 kg and s(V1) ¼ 10m(V1)/300. For the stiffness, let m(V2) ¼ 3.0MN/m
and s(V2) ¼ 10m(V2)/300. Let us see the shortcomings of the deterministic design pD for this situation. We
select samples of V1 and V2 from their lognormal distributions using random sampling to provide mass and
stiffness pairs [v#1],[v#2],y,[v#N] and then substitute them into Eq. (6) to obtain an(pD,v#i,o). For N ¼ 5000
samples, both the maximum and minimum normalized amplitude at each frequency are shown in Fig. 4. In
order to place the maximum and minimum in perspective, the normalized amplitude of the deterministic
design is shown as well. Indeed the large values of the maximum when there are variations in the mass and
stiffness of the main system emphasize the weakness of the absorber design pD.
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Fig. 4. Normalized amplitude of main mass at each frequency for deterministic design pD with m1 and k1 lognormally distributed: the

dotted line is obtained with v0 and the line and dashed line represent the maximum and minimum amplitudes, respectively.
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One way to measure and then improve the design proceeds as follows. We introduced a maximum
normalized amplitude of the main mass, say z0. In general, this value may be set according to safety and/or
comfort considerations. Then for a large sample size N we count the number of systems that have
an(pD,v#i,(1ooo3w2)4z0, say B, and write the probability of failure as P(F) ¼ B/N. A methodology that
searches for absorber parameters that reduces P(F), and by definition increases robustness, is needed. This is
discussed next.

2.4. Optimal probabilistic design

The deterministic optimization approach and the uncertainty issues developed above guide the way to the
formulation of a non-sample based probabilistic approach for finding p for uncertain main mass (m1) and
stiffness (k1). Let us emphasize the random nature of m1 and k1 by writing them in terms of arbitrary
distributions V1 and V2, respectively, so V ¼ [V1,V2]. Now the normalized amplitude, from Eq. (6), is a
random variable

Anðp;V;oÞ ¼ V2
c22o

2 þ ðk2 �m2o2Þ
2

c22o
2ðV 2 � V 1o2 �m2o2Þ

2
þ ðk2m2o2 � ðV2 � V1o2Þðk2 �m2o2ÞÞ

2

 !1=2

. (11)

Further, from Eqs. (2), (7) and (8) the critical frequencies are also random variables and are now denoted as
W1, W2 and W3. For example, from Eq. (2), the critical frequency w2 becomes the random variable

W 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2=V 1

p
. (12)

More specifically, suppose the mass and stiffness are lognormally distributed, independent. Now we set
m(V1) ¼ 17,500 kg with s(V1) ¼ 10m(V1)/300 and m(V2) ¼ 3MN/m with s(V2) ¼ 10m(V2)/300. In Fig. 5 is a
histogram of W2 compiled by random sampling with a sample size of N ¼ 1000. Similar histograms can be
constructed for W1 and W3. It is clear that the excitation frequency that causes the maximum amplitude is
unknown.

Let us follow the lead of the deterministic formulation above and include the random nature of the three
critical frequencies in the normalized amplitude in Eq. (11) and write, for i ¼ 1,2,3,

Anðp;V;W iÞ ¼ V2
c22W 2

i þ ðk2 �m2W 2
i Þ

2

c22W 2
i ðV2 � V 1W

2
i �m2W 2

i Þ
2
þ ðk2m2W

2
i � ðV2 � V 1W

2
i Þðk2 �m2W

2
i ÞÞ

2

 !1=2

. (13)
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Fig. 5. Histogram of random critical frequency W2.
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When we substitute W1, W2 and W3 (in terms of V1, V2, m2 and k2) into Eq. (13), in turn, we get the three,
random variable, dynamic performance measures of interest

Zi ¼ ziðp;VÞ; i ¼ 1; 2; 3. (14)

For example, for Z2, we have from Eqs. (12) and (13)

Z2ðp;VÞ ¼ V2

c22
V2

V1

� �
þ k2 �m2

V 2

V 1

� �� �2
c22

V2

V1

� �
V 2 � V1

V2

V1

� �
�m2

V2

V1

� �� �2
þ k2m2

V2

V1

� �
� V 2 � V 1

V2

V1

� �� �
k2 �m2

V2

V1

� �� �� �2
0
B@

1
CA

1=2

(15)

and we get similar expressions for Z1 and Z3. In order to merge the three performance measures into a single
probabilistic measure, we follow the approach used in the design of electrical filters [3]. Therein, critical
amplitude limits are specified for a number of critical frequencies according to the filter type and order (e.g. a
second-order low-pass filter has three critical limits). For a successful design, all amplitudes must satisfy their
corresponding critical limits in a probabilistic sense. In the design of the absorber system, we establish a single
critical limit over our range of frequencies that represents the maximum allowable, normalized, amplitude.
Then, we find the probability that any of the three performance measures in Eq. (14) exceeds the critical limit.
That is, we find

PðF Þ ¼ PððZ14z0Þ [ ðZ24z0Þ [ ðZ34z0ÞÞ. (16)

The optimum allocation of m2, k2 and c2 occurs when we minimize P(F). The theory for this approach and
its implementation are discussed in detail in the next section.

3. Probabilistic design theory

Consider a system model with q responses Z, written as functions of the m design variables V, in the
particular explicit form

Z ¼ zðVÞ. (17)

In general, the design variables V are random variables with probability distributions. We define a design
parameter vector p ¼ [p1,p2,y, p2m], where the parameters pi and pi+m represent the statistical nature of an
arbitrarily distributed design variable Vi. For example, for normal Vi, pi and pi+m represent the mean and
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standard deviation. Most systems have inherent critical operating levels (denoted herein as z0 ) such as melting
temperatures, over-voltages, or maximum amplitudes. It is then the responsibility of the designer to ensure
that the performance measures (e.g. responses) keep within these critical levels. Limit-state functions connect
the performance measures to their critical levels, and in terms of samples of the design variables, have the form

gðvÞ ¼ �ðzðvÞ � z0Þ, (18)

where z(v) is a performance measure and z0 is either a lower or upper limit specification. (Note: For upper limit
specifications the negative of the right side of Eq. (18) is used.) We define, for any limit-state function, three
regions:
g(v)40, vAConformance region (Success region, S)
g(v) ¼ 0, vALimit-state surface (LSS)
g(v)o0, vANon-conformance region (Failure region, F).
Examples of these three regions, in terms of two design variables, are shown in Fig. 6.
For m design variables, the LSS has dimension m�1. The surface is important since it separates samples

of the design variables into those that provide a conforming, or safe design and those that produce a
non-conforming, or fail design. Each limit-state function has one non-conforming region, say Fi for the ith
limit-state function. Then for n limit-state functions, the union of all such regions defines the system non-
conformance region denoted as F. Finally, the set of design variables V provides a joint probability
distribution fv(v), and when projected over the same space as the limit-state function, the probability of non-
conformance for the system is

PðF Þ ¼ Pð[n
i¼1FiÞ ¼ Pð[n

i¼1ðgiðVÞp0ÞÞ ¼

ZZ
F

f VðvÞdv. (19)

The system probability of conformance is simply

PðSÞ ¼ 1� PðF Þ.

It is common to estimate the probability integral in Eq. (19) by invoking a hyper-plane approximation to the
LSS. In order to see this connection we write, via Taylor series to first order, the conformance margin as the
hyper-plane

GðVÞ � gðvÞ þ ½V� v�TrVgðvÞ. (20)

A particular hyper-plane is formed according to the expansion point in Eq. (20). Most commonly, the point
selected comprises the mean values of the design variables. A more rational expansion point is called the most-
likely failure point (MLFP) and is the point on the LSS closest to the set of means [13].
Fig. 6. Limit-state function: (a) v-space, and (b) u-space.
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In general, using the Rosenblatt transformation [14], samples of the m arbitrarily distributed design
variables (i.e. v) can be mapped to a corresponding vector u that represents m standard normal variables. By
the same transformation, the LSS (and MLFP) in v-space, as shown in Fig. 6(a), may be mapped to u-space
(see Fig. 6(b)). The advantage of converting to u-space is that now the probability density has maximum
density at the origin and has the same value at all points a constant Euclidean distance away from the origin.
The MLFP in u-space, denoted as (u)*, has the highest probability density in the failure region. A hyper-plane
approximation to the LSS is obtained by a first-order Taylor expansion of the surface g(u) at (u)* and in the
format of Eq. (20) is expressed as [13]

gðp; uÞ � gðp; u�Þ þ ðu� u�ÞTrugðp; u�Þ. (21)

When Eq. (21) is invoked, we say we are using a FORM. Now, the MLFP satisfies two conditions: first, in
order to ensure that the MLFP is on the LSS, we must have g(p,u) ¼ 0. Next, to ensure we have the closest
point, we must have the vector u* co-linear with the gradient rug(p,u*). Another more computationally
effective way of writing the last condition is to use the actual hyper-plane, which from linear algebra, has the
notation null(rug(p,u*)) and now the condition changes such that the vector u* must be orthogonal to the
hyper-plane. The Euclidean distance from the origin in u-space to (u)* is given the symbol b and two examples
are shown in Fig. 7.

Then for the ith limit-state function, the probability of non-conformance is found via the one-dimensional
standard normal cumulative distribution function F and evaluated as

PðFiÞ ¼ Fð�biÞ. (22)

Further, the intersection probability of failure regions is important for accurate calculations in Eq. (19). For
example, the intersection probability any two failure regions, say for hyper-plane LSSs i and j, is evaluated as

PðFi \ F jÞ ¼ F2ð�bi;�bj ; ri;jÞ

¼

Z �bi

�1

Z �bj

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i;j

q exp �
u2
1 � 2ri;ju1u2 þ u2

2

2ð1� r2i;jÞ

 !
du1 du2, ð23Þ

where F2 is the bivariate, cumulative, normal distribution function. The term ri,j indicates a sort of positional
correlation coefficient (i.e. it ranges from �1 to +1) between two approximating LSSs, and is expressed as

ri;j ¼
u�i � u

�
j

jju�i jj2jju
�
j jj2

, (24)

where u�i indicates the vector to the MLFP of the ith limit-state function. Numerical algorithms for evaluating
the bi-normal cumulative function to accuracy 10�10 are given in Ref. [15].
Fig. 7. Probability evaluation using FORM.
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The system probability of non-conformance according to Eq. (19), and using the above FORM notation
with second-order union probabilities, can be approximated as

PðF ðpÞÞ ffi
Xn

i¼1

Fð�biðpÞÞ �
Xn

i¼2

Xjoi

j¼1

F2ð�biðpÞ;�bjðpÞ;ri;jðpÞÞ. (25)

The design problem for n limit-state functions is posed as a constrained optimization problem as follows:

MinPðF ðpÞÞ (26)

subject to the constraints:

giðp; uÞ ¼ 0 for i ¼ 1; 2; . . . ; n,

ui � nullðrugiðp; uÞÞ ¼ 0 for i ¼ 1; 2; . . . ; n,

pLppppU ,

where pL and pU are the lower and upper bounds, respectively, on the design parameters p.

4. Absorber design example

4.1. Optimal probabilistic design

The proposed probabilistic design approach is now applied to the design of a vibration absorber for a steel
box girder footbridge [10–12]. The footbridge is simplified to a lumped-parameter, mass-stiffner, system as
shown in Fig. 1. The mass of the footbridge m1 and the stiffness k1 are independent random variables with
lognormal distributions. The respective means are m1 ¼ 17,500 kg and m2 ¼ 3.0MN/m and the respective
standard deviations are set at s1 ¼ 10m1/300 kg and s2 ¼ 10m2/300MN/m. The u–v transformations are

vi ¼ exp log
m2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2i þ s2i
p

 !
þ log

s2i
m2i
þ 1

� �
ui

 !
; i ¼ 1; 2. (27)

At this time we let the design parameter vector be deterministic and thus p ¼ [m2,k2,c2] with lower and upper
levels respectively 10pm2p1750 kg, 100pk2p106N/m and 10pc2p2000N s/m. The sinusoidal loading has a
constant amplitude of P0 ¼ 0.48 kN with a range of excitation frequencies given as 1pop3w2 rad/s. For
purposes of comparison herein, we set z0 ¼ 20, although in general, the upper critical normalized amplitude of
the main mass z0 is set according to safety and/or comfort considerations.

The three sampled performance measures in v-space come from Eq. (14) and have the form zi(p,v). For
example, for the critical frequency w2, we have from Eq. (15)

z2ðp; vÞ ¼ v2
c22

v2
v1

� �
þ k2 �m2

v2
v1

� �� �2
c22

v2
v1

� �
v2 � v1

v2
v1

� �
�m2

v2
v1

� �� �2
þ k2m2

v2
v1

� �
� v2 � v1

v2
v1

� �� �
k2 �m2

v2
v1

� �� �� �2
0
B@

1
CA

1=2

. (28)

When we substitute the u–v transformations from Eq. (27) into Eq. (28), we get the performance measures
zi(p,u). We now write the three limit-state functions as

giðp; uÞ ¼ z0 � ziðp; uÞ; i ¼ 1; 2; 3. (29)

The combined probability of non-conformance, following the template in Eq. (16), is simply

PðF ðpÞÞ ¼ Pððg1ðp; uÞo0Þ [ ðg2ðp; uÞo0Þ [ ðg3ðp; uÞo0ÞÞ. (30)

For a FORM implementation of Eq. (30), we follow Eq. (25) to get

PðF ðpÞÞ ¼
X3
i¼1

Fð�biðpÞÞ �
X3
i¼2

Xjoi

j¼1

F2ð�biðpÞ;�bjðpÞ; ri;jðpÞÞ. (31)
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The parameters in the vibration absorber are found via the constrained optimization problem

MinPðF ðpÞ (32)

subject to the constraints:

giðp; uÞ ¼ 0 for i ¼ 1; 2; 3,

ui � nullðrugiðp; uÞÞ ¼ 0 for i ¼ 1; 2; 3.

�10pm2p1750 kg,

100pk2p106 N=m,

10pc2p2000N s=m.

The solution to the optimization problem in Eq. (32) is iterative and requires initial conditions. For
convenience, we use the set of values in pD. The design obtained through solving Eq. (32) is
pP ¼ [m2,k2,c2] ¼ [569.47 kg, 88,400N/m, 2000N s/m] and the design gives P(F(pP)) ¼ 2.3	 10�10. The new
design has increased the mass ratio to about 3.25% and increased the stiffness and damping in the vibration
absorber considerably. Indeed the damping parameter c2 has reached its upper bound. In order to see the
significance of this design, consider the frequency responses for an(pP,v#i,o). For the same 5000 samples of the
mass and stiffness pairs used in Fig. 4, the maximum and minimum normalized amplitudes, at each frequency,
are shown in Fig. 8. All maximum amplitudes over the frequency range are far remote from the critical limit.
This design shows a significant improvement when compared to the deterministic design results in Fig. 4.

4.2. Design comparisons

Suppose we assign normal distributions for the mass and stiffness, rather than lognormal, to agree with
those in our referenced work so that now the u–v transformations have the form vi ¼ mi+siui. The design
results are very similar to those with lognormal distributions with only the mass decreasing by 2 kg. The
similarities in the lognormal and normal results are not surprising since for both mass and stiffness si5mi for
i ¼ 1, 2. Thus, the design pP is used henceforth for comparison purposes.
Fig. 8. Normalized amplitude of main mass at each frequency for new design pP with m1 and k1 lognormally distributed: the dotted line is

obtained with v0 and the line and dashed line represent the maximum and minimum amplitudes, respectively.
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For a second, more representative comparison of the new design, the probabilistic design results presented
in Ref. [10] are used. Therein the various designs are listed according to the weighting factor a used in the
objective function shown in Eq. (1). Specifically, a ¼ 0, gives ‘‘Robust Design-1’’ and a ¼ 1 gives ‘‘Robust
Design-11’’. Although the authors in Ref. [10] selected ‘‘Robust Design-6’’ as the most robust design, we have
selected ‘‘Robust Design-11’’ where pM ¼ [m2,k2,c2] ¼ [510.93 kg, 84592N/m, 2000N s/m] since our
investigations show that this design provides the best competition for our approach. For example, with the
critical limit z0 ¼ 20, we get P(F(pM)) ¼ 6	 10�7.

LSSs provide a simple graphical means of comparing designs. The LSSs are actually lines when there
are only two design variables (i.e. V1 and V2) in the limit-state functions. Further, as shown in Fig. 9, all
limit-state lines are practically linear, which suggests FORM probability estimations are quite accurate.
Plots of the limit-state lines (with p specified) are obtained from implicit solutions of g(u1,u2) ¼ 0. For
comparison purposes, the limit-state lines from the three designs pD, pM and pP are shown in Fig. 9(a)–(c)
respectively.

It should be noted that the limit-state line g2 ¼ 0 is actually an oval: this is not unexpected because of the
high nonlinearity of the limit-state functions. Fortunately g2 ¼ 0 presents two, nearly parallel, lines that
effectively straddle the origin. In many cases this may present a problem because only one MLFP per LSS is
used. However, here it is not a problem, since on respective sides of the origin b2bb1 and b2bb3 for all three
designs, and thus the non-conformance region g2o0 is essentially contained in either g1o0 or g3o0 and any
probability contribution is removed by intersection calculations. Also of interest are the relations b35b2 and
b15b2 that tell us that the normalized amplitude is much more likely to exceed z0 at frequencies w1 and w3

than at w2.
In general, the farther a limit-state line is from the origin (and the larger b), the smaller the non-

conformance region and hence the smaller the respective probability of non-conformance. Thus, when we use
relative magnitudes of the indices b1, b2 and b3, to compare designs pD, pM and pP it is clear graphically that
P(F(pP)) and P(F(pM)) oo P(F(pD)) and the two probabilistic designs are more robust. Finally, let us
compare the two probabilistic designs pM and pP. We see for pM in Fig. 9(b) that b3bb1 which suggests that
this design is more likely to be non-conforming at w1. However, for design pP in Fig. 9(c), we see a more
balanced design, although still b34b1, which suggests that the likelihood of non-conformance is not that
different at either w1 or w3.

A more common graphical comparison uses plots of the mean and standard deviation of An over the
frequency range. Good approximations of these measures for small variances in the design variables are
written as follows [10]:

mðAnÞ � AnðmðV1Þ; mðV2Þ;oÞ (33)

and

s2ðAnÞ �
qAnðV 1;V2;oÞ

qV1

� �2

mðVÞ
s2ðV 1Þ þ

qAnðV1;V 2;oÞ
qV 2

� �2

mðVÞ
s2ðV2Þ. (34)

In Fig. 10 are plots of the mean and standard deviation using the three designs pD, pM and pP over the
excitation frequency range.

It is clear that the proposed probabilistic approach effectively reduces both the mean and standard deviation
of the normalized amplitude under the excitation force over a wide range of frequencies. Indeed, the absorber
design pP provides considerable improvement when compared with the deterministic design pD over all
frequencies. When compared with pM, design pP shows generally a 10% improvement, especially around w1

and w2, although the results around w3 are about 5% poorer.

5. Additional analyses

5.1. Relative motion of absorber mass

An important factor that has not been considered so far is the relative motion of the absorber mass
with respect to the main mass. This measure is important since the displacement must not violate either
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Fig. 9. Three limit-state surfaces g1 ¼ 0 (dashed line), g2 ¼ 0 (line), and g3 ¼ 0 (dotted line) where F1 ¼ {uAR2|g1(p,u)o0},

F2 ¼ {uAR2|g2(p,u)o0}, F3 ¼ {uAR2|g3(p,u)o0} for the three designs: (a) pD, (b) pM and (c) pP.
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Fig. 10. Normalized amplitude An for designs pD (dotted line), pM (dashed line), and pP (line) with (a) mean values and (b) standard

deviation.
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the compressed or extended physical limits of either the damper c2 or the stiffener k2. The relative
motion is obtained as (|x2|�|x1|) using Eqs. (4) and (5). The two probabilistic designs pM and pP are com-
pared using the respective means and standard deviation that are calculated by adapting Eqs. (33) and (34).
Plots are shown in Fig. 11(a) and (b). The proposed design pP when compared with design pM provides
in general both a lower mean and a standard deviation over a wide range of excitation frequencies (except
near w3).

5.2. Uncertain parameters in the absorber subsystem

Let us consider uncertainty, not only in the main system, but in the vibration absorber subsystem as well.
The proposed methodology is easily extended. Now, the mass m2, stiffness k2 and damping c2 become random
variables V3, V4 and V5, respectively and so V ¼ [V1,V2,V3,V4,V5]. The normalized amplitude has the
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Fig. 11. Relative motion of m2: (a) mean, and (b) standard deviation for designs pM (dashed line) and pP (line).
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functional form

An ¼ anðV;oÞ. (35)

The distributions for V3, V4 and V5 are chosen as lognormal and independent and their u–v transformations
follow Eq. (27) where si ¼ 10mi/300 for i ¼ 1,2y5.

The sampled performance measures are of the form zi(v). For example for z2, with reference to Eqs. (15) and
(28), we have

z2ðvÞ ¼ v2
v25

v2
v1

� �
þ v4 � v3

v2
v1

� �� �2
v25

v2
v1

� �
v2 � v1

v2
v1

� �
� v3

v2
v1

� �� �2
þ v4v3

v2
v1

� �
� v2 � v1

v2
v1

� �� �
v4 � v3

v2
v1
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0
B@

1
CA

1=2

. (36)
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when we substitute the u–v space transformations from Eq. (27) with i ¼ 1,2y5, we are left with the variables
p ¼ [m3,m4,m5] and u ¼ [u1,u2,u3,u4,u5] to give the performance measures zi(p,u). The three limit-state functions,
although quite different in make-up from those in Section 4, have the same symbolic form

giðp; uÞ ¼ z0 � ziðp; uÞ; i ¼ 1; 2; 3. (37)

The optimization problem is an extension of Eq. (32) with m2, k2 and c2 replaced by m3, m4 and m5. The
solution of Eq. (32) provides the design parameter vector pA ¼ [571 kg, 87,914N/m, 2000N s/m] and these
results are not that different from pP. However we get P(F(pA)) ¼ 3.4	 10�6 and this is three orders of
magnitude greater than P(F(pP)). Since there are now five design variables, it is not possible to visualize the
LSSs graphically since they are four-dimensional (i.e. n�1).

5.3. Error analyses

In order to see how well P(F(p)) represents the probability of non-conformance of the system over the entire
frequency range, let us develop the true system probability of non-conformance. For this, we invoke Monte-
Carlo simulation (MCS) and generate samples of V denoted as [v#1],[v#2],y,[v#N] for N ¼ 10,000. Then for
each sample we check for non-conformance at a sequence of closely spaced frequencies (e.g. 0.1 rad/s) across
the spectrum. Specifically, for the ith sample we evaluate sign(an(p,v#I,ok)�z0) for k ¼ 1,2yM, at which
o1 ¼ 1, o2 ¼ 1.1,y oM ¼ 3w2 rad/s. A positive sign at any ok indicates the sampled system has failed.
Suppose there are B failed sampled systems, then we let the true system probability of non-conformance be
P(MCS(p)) ¼ B/N.

Further, lets us continually reduce the critical limit z0 and then compare (a) designs pD, pM, pP for normal
distributions, and (b) designs pD, pP, pA for lognormal distributions in terms of both P(F(p)) and P(MCS(p)).
The results are shown in Tables 1 and 2 respectively.

The results show that the error between P(F) and the true system probability of non-conformance P(MCS)
increases as we reduce the critical limit z0 from 20 to 11. This is not surprising since the normalized amplitudes
at the critical frequencies are not the worst-case values over the frequency spectrum. This situation is shown in
Fig. 3. Nevertheless, the proposed design pP is always more robust than previous designs pD and pM.
Table 1

P(F(p)) and P(MCS(p)) for p ¼ pD, pM, pP according to z0 for normally distributed m1 and k1

z0 pD pM pP

P(F) P(MCS) P(F) P(MCS) P(F) P(MCS)

20 2.1	 10�1 3.0	 10�1 6.0	 10�7 2.0	 10�4 3.0	 10�10 0.0

17 4.3	 10�1 5.7	 10�1 2.2	 10�5 1.9	 10�3 2.9	 10�8 0.0

15 6.7	 10�1 8.6	 10�1 2.4	 10�4 1.6	 10�2 1.0	 10�6 1.0	 10�4

13 1.0 1.0 2.6	 10�3 1.0	 10�1 6.8	 10�5 3.9	 10�3

11 1.0 1.0 5.1	 10�2 5.2	 10�1 7.1	 10�3 1.1	 10�1

Table 2

P(F(p)) and P(MCS(p)) for p ¼ pD, pP, pA according to z0 for lognormally distributed m1 and k1

z0 pD pP pA

P(F) P(MCS) P(F) P(MCS) P(F) P(MCS)

20 2.1	 10�1 3.1	 10�1 2.3	 10�10 0.0 3.4	 10�6 1.0	 10�4

17 4.3	 10�1 5.7	 10�1 2.7	 10�8 0.0 6.5	 10�5 1.3	 10�3

15 6.7	 10�1 8.6	 10�1 1.1	 10�6 0.0 6.3	 10�4 7.0	 10�3

13 9.9	 10�1 1.0 7.6	 10�5 5.6	 10�3 6.2	 10�3 5.2	 10�2

11 1.0 1.0 7.9	 10�3 1.0	 10�1 7.9	 10�2 2.7	 10�1



ARTICLE IN PRESS
Y.K. Son, G.J. Savage / Journal of Sound and Vibration 307 (2007) 20–3736
6. Conclusions

In this paper is presented a new probabilistic approach to produce a robust design when the resonance
frequencies of a dynamic system are uncertain due to component variation. Herein lognormal distributions
have been selected for design purposes while normal distributions have been assigned to help with
comparisons to previous research (other distributions are possible and do not change the methodology). The
forced vibration of a 2-dof system is examined and ways to minimize dynamic amplitude and its variation over
a wide range of excitation frequencies are developed. In an attempt to manage the amplitude over the entire
frequency range, three critical frequencies have been designated as surrogates for the frequency range. The key
to the approach is the introduction, in a rational manner, of maximum critical amplitude. This leads to limit-
state functions at each of the three critical frequencies that link respective amplitudes and the single critical
limit. Each limit-state function provides a non-conformance region and the probability of the union of all
three non-conformance regions provides a single, non-subjective, measure that is intended to represent the
system probability of non-conformance. Constrained, gradient-based, nonlinear optimization methods have
been invoked to allocate the design parameters to minimize the objective function. Studies using a range of
values of the critical amplitude limit (i.e. 11oz0o20) showed that improvements offered by the new approach
are invariant to the value of the critical amplitude limit. However, the probability of non-conformance
obtained in the course of the design may be quite different from the true system probability of non-
conformance. More work is needed to close this difference.

The results of the proposed design method have been compared with those from (a) a deterministic design
and (b) a second-moment probabilistic design. Further, the measures used to compare the three designs were
(a) the probability of non-conformance measure, (b) the mean and standard deviation of amplitude over the
frequency range, and, (c) the relative displacement of the absorber mass to the main mass. In all three of the
comparisons, the new approach was overall superior.

The number of design variables and the number of performance measures can be expanded and still the
single non-conformance probability objective can be applied. Herein, we increased the number of random
design variables from two to five by letting the vibration absorber have uncertainty. Comparative results were
obtained. Further, suppose we wish to include the relative motion of the absorber mass with respect to upper
and lower critical lengths or the strength of the absorber stiffness with respect to an ultimate strength. These
new performance measures can be described in terms of limit-state functions to augment those from the three
amplitudes. The method may be extended to (a) vibration problems with more than 2-dof, and, integrated
design, whereby means and tolerances are simultaneously found, provided a suitable cost function is available
to effectively allocate the tolerances. For cases when the critical frequencies are not explicit functions of the
design variables, it may be necessary to be more flexible and select a judicious number of deterministic
frequencies to represent the overall frequency spectrum. More investigation in this area needs to be done.
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